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A multilayer model consisting of n homogeneous layers is used to describe the three- 
dimensional steady flow of a continuously stratified, incompressible fluid under the 
assumption of hydrostatic balance. For n = I, one has the classical shallow water theory and 
the governing equations correspond to those for the steady two-dimensional flow of a 
compressible gas with y, the ratio of specific heats, equal to 2. For n > 1, the equations form a 
nonlinear system of partial differential equations of order 2n. For most practical stratified 
flow problems this system is neither totally hyperbolic or totally elliptic; i.e., it possesses both 
real and imaginary characteristics over the entire domain of interest. A numerical algorithm 
for this “mixed” case is proposed and calculations for a two-layer model are presented. 
Continuous solutions are shown to exist for sufftciently flat and smooth obstacles. 

1. INTR~OUCTI~N 

This study concerns the steady three-dimensional continuous flow of an incom- 
pressible fluid. As an approximation to a continuously stratified and sheared fluid of 
finite depth, we consider a fluid composed of n homogeneous layers. Each layer is 
characterized by a thickness h,, averaged horizontal velocity components Ui and Ui, 
and a density pi. The first three quantities hi, zZi, and Ui vary along streamlines while 
pi remains constant due to the assumption of incompressibility. Such multilayer 
systems are of considerable practical interest in meteorology and oceanography due 
to the frequent occurrence of strong temperature inversions in the atmosphere and 
oceans. These inversion layers are dynamically similar to the interface between 
homogeneous layers. Thus this problem, of stratified flows around a three- 
dimensional mountain, has received considerable attention. For the most part, 
however, studies have been restricted to approaches in which the obstacle is taken to 
be a small perturbation of a plane surface; e.g. see Crapper [2] and Wong [lo]. 
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Apparently the only exception is the theory of Drazin [3 ] which is valid 
asymptotically as the Froude number approaches zero. Recent experimental studies 
include those by Brighton [ 11, Hunt and Snyder [4], and Riley et al. (61. Multilayer 
models in two dimensions are discussed in papers by Lee and Su [5] for continuous 
flows and by Su [8] for flows containing hydraulic jumps. While a multilayer model 
in two dimensions is governed by a system of nonlinear algebraic equations, however, 
multilayer models in three dimensions involve systems of nonlinear partial differential 
equations. We derive these equations under the assumptions of hydrostatic balance 
and a nonrotating frame of reference. Thus, valid applications of this model are 
subject to the following restrictions. First, due to the assumption of hydrostatics, our 
method applies only to motions in which vertical accelerations may be neglected; e.g., 
flows over barriers whose heights are much smaller than the horizontal dimensions of 
the problem. Secondly, we are further restricted to those flows for which the Coriolis 
force is negligible; e.g., small-scale atmospheric and oceanic phenomena such as 
airflow over individual mountain ranges and ocean flow around islands. Vertical 
averaging of the horizontal velocity components in each layer is also employed. The 
resulting set of equations consists of a mass conservation equation, vorticity equation 
and Bernouilli’s theorem for each layer. In the degenerate case of one-layer flow, the 
equations are analogous to those governing certain two-dimensional flows in gas 
dynamics. 

A general method of solution employing standard methods is available for the 
linearized n-layer model; however, for the sake of brevity we present here explicit 
solutions only for the two-layer model. Of interest primarily is the form of the 
linearized governing equations which is shown to suggest certain approximate 
methods of solution for the nonlinear equations, and secondly the linear solutions 
themselves which provide useful corroboration for the resulting nonlinear numerical 
solutions in the limit of infinitesimal obstacle height. 

A numerical algorithm for the solution of the nonlinear equations is proposed, and 
calculations for the flow of a two-layer system over an obstacle, around a cylinder 
extending vertically through the total fluid depth, and around obstacles placed 
interior to the layers are presented. All the above solutions are shown to be 
continuous for moderate obstacle sizes. 

2. GOVERNING EQUATIONS 

We divide the fluid of total depth H into n layers. Each layer has thickness h,(x, y), 
averaged horizontal velocity components z&(x, y) and U;.(x, JJ) and density pi. The 
capital letters Hi and Vi will be used for the corresponding physical quantities far 
upstream; i.e., (Ui,Hi)=(Ci,hi) at x=-co (note that ci=O at x=---00), and 
H = xi”= i Hi. The density pi is constant in each layer. We denote by h,(x, JJ) an 
obstacle profile which vanishes as ](x, y)] + co, and assume the flow in each layer to 
be steady, incompressible, two-dimensional, inviscid, and hydrostatic in a nonrotating 
frame of reference. A schematic of the fluid geometry is shown in Fig. 1. 
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FIG. 1. Schematic of flow field. 

The governing equations for each layer are mass continuity, 

J$ + g (hizii) + g (hi?Ti) = 0, 

and momentum, 

$+ (qi ’ v)qi+$vpi=09 i = I,..., n, 
I 

(1) 

where qi = (U;., V;.), V = (a/ax, a/@), and the bars denote a vertical average in the ith 
layer; i.e., 

In the above, zk(x, y, t) denotes the height of the fluid interface between the kth and 
(k + 1)st layers, 

z/J&y, t> = $ hj(X, y, q. 
j=O 

Using the hydrostatic relation and denoting the pressure at the top of the fluid as p,, 
the pressure at a point within the ith layer may be written as 

Pi(x9 Y9 z, f, =Ps + g ,=$+, Pjhj + gPi (i hj - ‘) 7 
j=O 



400 STEVENS AND SU 

where z is the height of the point above the reference level. Since the z dependence of 
pi(x, y, z, t) will drop out of (2) because of the V operation, however, we shall 
hereafter denote pi without explicit specification of independent variables as 

Pi=ps+g i pjhj+gpi i hj- 
j=i+l j=O 

Equations (1) and (2), derived in Stevens [7], are the starting point of our study. 
Under the assumption of steady flow, they reduce to the following three basic 
equations in each layer: 

z (h,Ci) + $ (hici) = 0, 

+(Bi + a:) +piEBiY 
vxqi = 0, 

(4) 
(5) 

where Bi is the Bernoulli constant 

BiE$ +g i piHj+g~fzj+~. 
j=i+l Pi j=O I 

Note that the value of ps far upstream is denoted here by P,. Equations 
corresponding to (3) and (4) for multilayer models in two dimensions are given in 
Lee and Su [5] and Su [8]. Apparent from the form of (3) and (4) is the well-known 
fact that the theory for one-layer flow is analogous to that for steady two-dimensional 
flows in gas dynamics with y, the ratio of specific heats, equal to 2. 

For convenience, the bars over the averaged horizontal velocity components will be 
omitted in the remainder of this paper. 

3. LINEAR SOLUTIONS 

In this section we present the linear equations for the n-layer model with a free or 
rigid upper surface and outline a method for their solution. Explicit solutions are 
given for the two-layer model with a rigid upper surface. 

a. Free Upper Surface 

We expand ui, ui, and h, in terms of a small parameter E as 

ui = (u*, Ui) = V(U*x + Egj” + &*gz) + -a*), (‘9 
h, z H. + ehj” + &‘h;*’ + . . . r 9 (7) 

where #i denotes the velocity potential in the ith layer and h,(x, y) specifies the 
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obstacle height. For flow over an obstacle the small parameter E is given by the ratio 
of the width to the length (flowwise) of the obstacle. Substitution of (6) and (7) into 
(3) and (4) yields 

H,V’$;” + Ui; hj” = 0, 

where we have used the free upper surface condition ps = constant and ignored O(E*) 
terms. 

As this system of 2n equations for the velocity potentials and layer thicknesses 
may be solved using standard methods, we shall give only a brief sketch of the 
procedure: 

(i) Eliminate the layer thickness terms to obtain a system of n equations for 
the n velocity potentials. 

(ii) Assume solutions of the form di(x, JJ) = w#, , kJ ei(klx+k2y’; i.e., “plane 
wave” solutions, to obtain k,/k, = fa,, i = 1,2,..., n, expressing the values of k,/k, 
corresponding to nontrivial solutions. Here l/c+ gives the slope of the ith charac- 
teristic for real ai. 

(iii) The solution is then obtained by applying suitable boundary conditions. 
These consist of a condition at the obstacle, if necessary (see below), and the 
upstream condition #i (‘) = 0 when the equations are totally hyperbolic or the 
condition that #{” = 0 at y = f co when the equations are totally elliptic. For systems 
which are neither totally elliptic nor hyperbolic we employ a suitable combination of 
the latter two conditions. 

b. Rigid Upper Surface 

The condition that the upper surface remain fixed may be written 

or in terms of hj” 

go hi” = 0. (10) 

As the pressure at the fluid top is no longer constant when the upper surface is rigid, 
we expand ps in terms of E 

ps = P, + &Pi” + E2p;2’ + * - * ) (11) 

where P, is the upstream value of ps. Substitution of (6), (7), and (11) into (3) and 
(4), using the rigid upper surface condition (lo), and ignoring O(e2) terms, we obtain 
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HiV*@jl’ + Ui g hi” zr 0, (12) 

u, &Y n;’ p,-p 
qg+g x p. L.-z/$” +g l-6) i hj” +L+o. 

j=itl I ( Pi, j=O I 
(13) 

As in the free upper surface case we eliminate the layer thickness terms in (13) using 
(12) to obtain a system of equations for the velocity potentials. The general 
discussion of the method of solution for the n-layer problem with free upper surface 
also applies here. Thus we present instead explicit results for the simple case of linear 
two-layer flow with a rigid upper surface. Presentation of this material is relevant to 
the numerical algorithm for the nonlinear equations proposed in the next section. 

We define the nondimensional variables II;, u;, q, and co as 

ui = (“i9 ui) = u, fi u13 

ho = H,Co, 

4 = H,(l - 60 + v). 

The rigid upper surface condition is 

ho + h, + h, = H, + H,, 

which, along with the expressions for ho and h,, implies that 

h, = H,(a - rl), 

where a = HJH,. The nonlinear governing equations (3) and (4) in terms of these 
nondimensional variables take the form 

(1 + ?j -Co) v * u; + ll; * vy = u; * vy,, (14) 

(a - r/) v * u; - u; - vq = 0, (15) 

vxu;=o, (16) 

v x u; = 0, (17) 

q=F*(u;-U; + 1 -p*>, (18) 

where we have introduced the parameters 

u: F*=- 1 
2gH, 1 - ~21~1 ’ 

H2 a=----. 
H, 
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The Froude number, as defined here for a two-layer system, is the ratio of the 
bouyancy force to inertia force. Equivalence of F in two-layer flows ensures dynamic 
similarity. 

We note the values of the dependent variables far upstream, 

u; = (US, G> = (W*IU,) q&z, 0) = co, Oh 

u; = (u;) ?I;) = (1, O), 

v = 0, 

Lo = 0. 

Substitution of the following expansions in terms of E, 

u; = v(flx + $2) = v(px + &qp + &*#:2’ -I- * * *), 

u; = V(x + fhl) = V(x + &fy + &$?q) + **a), 

q = &l) + &p + . . . ) 

C-0 = EP, 

into (14) through (18) and ignoring O(E*) terms, yields 

r (1) = -@yY”’ * 3 

(19) 

(20) 

(21) 

where 

@(‘) =/j(q) + qp, 

y(1) = /$(1’) -/j(q), 

I'& = 2F*( 1 + @*/a)). 

We choose as our obstacle the particularly simple case of a cylinder extending 
through the total fluid depth and having horizontal cross-section streamlined in the 
direction of the flow (see Fig. 2). The boundary condition on the vertical cylinder 
walls is that the component of the fluid velocity normal to the cylinder vanish. To 
order E this condition takes the form 

@‘)=p(l + a)F’(x) 

Y) = (1 +')F'(x) 
at y=O, (22) 

at y=O. (23) 
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FIG. 2. Flow around a cylinder. 

The upstream boundary condition is 

@(I) = y(l) = 0 (24) 

Thus the equations governing linear two-layer flow over an obstacle are shown to be 
in the form of a decoupled pair of second order PDEs given by (19) and (20). (Note 
that the terms to the right of the equals sign in (19) and (20) vanish for flow past a 
cylinder.) The solution to (19), (20) satisfying the boundary conditions (22)-(24) is 
given by 

(i) B = dm real, 

P(l +a> .m 
@‘yw) = 2n J F’(t) ln[(t - xl’ +Y*] dt, 

C1)(x,,,=a;-i,,,, 

(ii) B = dm imaginary, 

@‘“(x,Y)Jy4jm F’(t)ln[(t-xx)* +Y*I d<, -a, 
1-p’ .a, 

!ww)= 2n 
! 

F’(t) ln[(t - x)* + (Re By)*] dt. -m 

The fundamental difference between these two solutions is characterized by the 
predicted behavior of the interface between the two fluids. The disturbance on the 
interface is given by #“(x, y), which according to (21), depends only on Y(‘). Thus, 
for the solution corresponding to real values of B, the interface is disturbed only 
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along the characteristics (x -BJJ = const) emanating from the cylinder in the 
downstream direction, while for solutions corresponding to imaginary B, the distur- 
bance is felt throughout the entire flow field. We note also that for general upstream 
flow speeds, the value of M*, where 

&f*= ( 
u: -++) (I-!$ gH, 

can always be made arbitrarily large by choosing p2/p, sufftciently close to unity. 
Thus, for example, it is possible to produce hypersonic flow phenomena by towing a 
thin cylinder at an arbitrary slow speed through such a two-layered system so long as 
p2/p, is sufficiently close to 1. The system described here is therefore potentially 
useful as an experimental model for the visualization of hypersonic flow problems. 

4. A NUMERICAL ALGORITHM 

In this section we present a numerical algorithm for solving the nonlinear system 
of equations derived in Section 2. Since standard numerical techniques are readily 
applicable to this problem when the system of equations is totally hyperbolic or 
totally elliptic, the proposed algorithm is designed to handle systems of mixed type. 
For the sake of clarity, we note that the term “mixed type” can refer to different 
situations. The standard use of this term is in reference to second-order equations 
which are elliptic in one region but hyperbolic in an adjacent region. A second 
possibility is in reference to systems of order n > 2 for which m characteristic 
directions are real throughout the flow field and the remaining n - m (0 < n - m < n) 
are imaginary. We restrict our attention to systems of mixed type in the latter sense. 
An example of such a system of equations is given by the nonlinear equations 
governing the flow of a two-fluid system with a rigid upper surface. These equations 
possess one set of characteristics which is always imaginary and a second set which 
is real for obstacles of moderate size whenever either the upstream flow speeds are 
sufficiently large or the density ratio pJp, is sufficiently close to 1. Similarly, for a 
two-fluid system with a free upper surface, one finds that the nonlinear equations 
possess one set of real and one set of imaginary characteristics so long as the density 
ratio is close to one and the upstream velocities and obstacle heights are moderate. 
The related phenomena of hydraulic jumps and governing equations of mixed type in 
the first sense mentioned above presumably occur in flow systems having larger than 
moderate obstacle heights. These conclusions concerning the characteristics of the 
two-layer model can be straightforwardly generalized to n-layer models. 

-The algorithm for the solution of the nonlinear equations will be presented here for 
the two-layer model. The procedure can in principle be extended for the treatment of 
many-layered models; each additional layer introduces two new first-order equations 
specifying the horizontal velocity components in that layer. These equations, as 
outlined below, are integrated iteratively according to standard methods for hyper- 
bolic or elliptic equations depending on whether the associated characteristics are real 
or imaginary. The practicality of this method for multilayered models has yet to be 
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demonstrated, however, since the addition of layers increases the complexity of the 
algebra required for the determination of the characteristic directions. 

The basic steps in the proposed algorithm for the general n-layer model are as 
follows. 

(i) Express the 2n equations for the horizontal velocity components (e.g., Eqs. 
(14~( 17) for a two-layer model) in characteristic form. Corresponding to each 
characteristic direction ci we obtain an equation, referred to as a compatibility 
relation, containing only differentiations in the direction of ci. 

(ii) Assuming 2r real characteristic directions and 2n - 2r complex (paired) 
directions, group into two sets of equations the 2r compatibility relations 
corresponding to the real directions and the 2n - 2r relations corresponding to the 
complex directions. 

(iii) Over a suitably chosen mesh in the xy plane make an initial guess of the 
horizontal velocity components (ujp,!, vip,j); i = l,..., n; j = l,..., total number of mesh 
points. 

(iv) Using the compatibility relations corresponding to the real characteristics 
and standard numerical methods appropriate to hyperbolic equations (e.g., the 
characteristic method) obtain an improved estimate of 2r velocity components. 

(v) Using the compatibility relations corresponding to the imaginary charac- 
teristics and relaxation techniques, appropriate to elliptic equations, obtain improved 
estimates of the remaining 2n - 2r velocity components. 

(vi) Iterate steps (iv) and (v) until, for instance, 

where so is some suitably chosen convergence criteria. 
For the sake of simplicity, weshall illustrate the above computation steps for Eqs. 

(14)-( 18) governing the flow of a two-fluid system bounded above by a flat rigid 
surface and below by an obstacle whose height vanishes as ](x,v)] + co. First, Eqs. 
(14)-( 17) are reduced to characteristic form employing the method of von Mises [ 91, 
applicable to a general system of n first-order PDEs. Here we shall briefly illustrate 
the procedure using the linearized form of Eqs. (14)-( 17): 

au, au, --- 
ay ax = 0, 

au, av, --- 
ay ax 

= 0. 

(27) 

(28) 
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Such a system can be written in vector form as 

i: ai, . VwJ = b,, i = l,..., n, 
j=l 

where, for the above system, n = 4, w = (ul, ui, uq, uz), the 16 vectors aij are 

a,,: (1 - 2F*, 0) 

a2 1 : V*P, 0) 

a31: (0, 1) 

a41: (O,O) 

a12: (0, 1) 

a**: (O,O) 

a3*: (-LO) 

q2: P,O) 

aI+ W*P, 0) a14: ((40) 

a23: (a - 2F*/?*, 0) a24: (0, a) 

a3+ (O,O> a34: ((40) 

a43: (0, 1) a44: (-LO> 

and the 4 components of b are 

b way, I- ax ’ b, = b, = b, = 0. 

A necessary condition that the vector 5 = (Ji, A,) be normal to a characteristic 
direction is that the determinant of the matrix fi with components M, = 1. aij be 
equal to zero; i.e., 

det E = 0. 

For Eqs. (25)-(28) this reduces to 

[(A,/&>’ + l]{[l - 2F2(1 +/3’/a)](A,/lz2)’ + 1) = 0. 

Thus the slopes of the characteristic directions are given by 

-4,/k, = fi, k [2F*( 1 + /?/a) - 1 ] - I”. 

In the remainder of this section we assume that 2F*(l +/3*/a) > 1; for the case 
2F*(l + P’/a) < 1 the equations are totally elliptic and standard relaxation 
techniques are applicable. The compatibility relations corresponding to the charac- 
teristic directions are obtained by taking suitable linear combinations of Eqs. 
(25)-(28). The set of four multipliers M,, M,, M,, and M4 are determined up to a 
multiplicative constant by the system 

581/46/3-b 

(l-2F2)IZ,M1+2F2&M2+A2M3=0, 

J*M, -A,M3 = 0, 

2F2/3A,M, + (a - 2F2p2)A,M2 + JqM4 = 0, 

aA2M2 -A,M,=O. 

(29) 

(30) 

(31) 

(32) 



408 STEVENS AND SU 

A convenient choice of multipliers satisfying (29)-(32) is given by 

M, = -zlqqn,/n,>“, 

M, = (1 - 2~*)w~J3 + @,/4>, 

M, = -2FZp(/I,/&)*, 

M, = a( 1 - 2F2)(L,/1,)2 + a. 

The compatibility relations are then obtained by taking the following linear 
combinations of Eqs. (25)-(28): 

(1-2F’)%+%+2F*/3% 
I 

+M, 2F2j?~+(a-2F2/?2)$+a$ 
[ I 

+M, [2-z]+M, [!!!$-%,.L]=~,.$ 

which reduces to 

/[l-2F’(l+~)]tan*S+ (I-21.‘$)/% 

+][2F’ (1+~)--I]tan3B+(2Fz~-lI)tan8~~ 

+ /2F’$1%- /2F2$tan0/$$=-2F2t.$&tan2B, (33) 

where tan 8 = -1,/L,, so that 0 denotes the angle between a characteristic direction 
and the x axis, and a/au = a/%x + tan &a/@) denotes differentiation along a charac- 
teristic. Corresponding to the real directions 

tane=k [2F’ (If~)--l]-lli, 

we obtain the relations 

$(u,-/3u2)-tanfI$(v,-Bv,)=-tan’B%, Pa, b) 
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and corresponding to the imaginary characteristics tan B = fi, we obtain 

(3% b) 
Equations (34a, b) and (35a, b) are simply a restatement of the result obtained in 
Section 2 that the linearized equations for this two-layer model decouple into a pair 
of second-order PDEs. Supposing for the moment that the analytic solution given in 
Section 2 wabot known, we could nonetheless obtain an approximate solution by 
the following straightforward approach. First, notice that Eqs. (34a, b) are simply the 
characteristic form of Eq. (20). Thus we can immediately integrate these equations 
numerically using the method of characteristics, obtaining estimates of u1 - /3uZ and 
u, --/ID*. Secondly, Eqs. (35a, b), which may be written in the alternate form 

g C/b, + au,) + g @I, + au*) = 0 

-g (pu, + al+) -; @I, + CWJ = 0 

are equivalent to Eq. (19), a second-order eliptic PDE. Thus these equations may be 
integrated numerically using relaxation techniques to obtain estimates of /?u, + au2 
and pnBv, + au*. In the limit of zero forward step size in the integration of (34a, b) and 
zero mesh width in the integration of (36) and (37), this method is exact. The crux of 
the proposed algorithm is to extend this numerical idea to the fully nonlinear 
equations (e.g., Eqs. (14)-( 18) for the two-layer model). Since the nonlinear 
equations do not generally decouple as in the linear case, the extended method is 
necessarily an iterative one. During each iterative step we integrate the 2r real 
compatibility relations using standard characteristic methods to obtain 2r velocity 
components (or appropriate linear combinations of components) followed by an 
integration of the 2n - 2r imaginary relations using relaxation techniques to 
determine the remaining 2n - 2r velocity components or combinations thereof. The 
iterations are repeated until convergence is attained. Of course, there is a real 
question as to whether or not the iterations do in fact converge and a convergence 
proof is much desired. As is common in most such iterative procedures for nonlinear 
problems, however, no proof is presently available. Our confidence in the algorithm 
rests in the fact that it is convergent in the limit of zero obstacle height and in that 
our efforts to date in using the method to compute two-layer flows over obstacles of 
height up to approximately 0.45H, have yielded iterations converging to physically 
*easonable solutions. 

In the remainder of this section we supply some of the details concerning the 
application of this algorithm to the nonlinear equations (14)-(18). First, employing 
.he procedure outlined above for converting a system of PDEs to characteristic form, 
we find that the characteristic directions A,/& corresponding to these nonlinear 
:quations are given by the roots of the quartic equation 
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a = (a - q) u: - {F-*(1 -CO + a)(a - v) + (1 - 410 + q) u:, 

b=(a-rl)u,v,+(l--r,+r)u,v,, 

c=(a-~)u~-~F-2(1-~O+~)(a-~)+(1-~O+~)v~. ’ 

Thus the slopes of the characteristic directions are given by 

-4 
1,= *& 

bq/G~ 
a 

The quantity under the radical sign may be written 

b* -uc=M2 - 1, 

where 

2 2 u: t v: 
M* = 2F2 (1” ; ;v, + 2F2 (a _ r) 4F-4 @,v2 - u2d2 -- 

(1 - Co + ?)(a - rl) * 

As in the linear ase we assume that M, the local Mach number for this problem, is 
greater than 1. The compatibility relations have the form 

where a/&r, = a/ax + tan 8,(8/8y) denotes differentiation along the ith characteristic 
and the coefficients /?jk) and the nonhomogeneous term G, are complicated 
expressions involving u2, u2, ui , u,, q, a, B, F, tan 4, Co9 X,/i% and &,/a~. As 
previously mentioned, these equations are fully coupled so that there is no 
immediately obvious choice for the velocity components to be computed during the 
characteristic method integration step or for those to be computed during the relax- 
ation step. Thus, based on the form of the linearized compatibility relations, we 
simply define 

to be determined during the characteristic method integration step and 

‘(ue, ue) = (pu, + au2,Pu, t au*> 

to be determined during the relaxation step. In terms of these new variables the two 
real compatibility relations have the form 
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where again ~!@a, denotes differentiation along the real characteristic directions 
tan 8, and the coefficients /?y’ and nonhomogeneous terms G, are complicated 
expressions involving uh, vh, u,, ve, a, P, q, F, tan ok, Co, X,/h and X,l2~. The 
iterations commence with an initial guess (ulp’, vi’), up’, Vet’) of (z+, v,,, u,, v,) at the 
nodal points of a suitable rectangular grid in the horizontal xy plane. Substitution of 
these values into all terms in Eqs. (38a, b) excepting derivatives appearing on the left- 
hand sides, we obtain two equations which are integrated stepwise along the two sets 
of characteristic curves emanating from the upstream boundary according to standard 
methods. The initial conditions along the upstream boundary and the boundary 
conditions along the noncharacteristic lines y = 0 and y =y,,, are given 
schematically in Fig. 3b. The upstream condition is simply that the flow should have 
the prescribed upstream values (uh, VJ = (1 -/3*, 0) and the boundary y = 0 is 
assumed to be a surface of symmetry so that v,, = 0 there. For the problem of flow 
past a cylinder symmetric about y = 0 and extending through the entire fluid depth, 
we require that the component of (uh, v,,) normal to the cylinder vanish. We also 
assume that the mesh encloses a large enough portion of the fow field so that along 
the boundary y = y,,, we may neglect disturbances in the y direction; i.e., we assume 
v,, = 0 along this surface. The result of this integration step is a set of values 
(u It”, va)) defined on the nodal points of the rectangular mesh in the xy plane. 

a 

“h 

v,=o 

V,,=o ii.&,,“,,)=0 V,,=O 

FIG. 3. (a) Boundary conditions for relaxation scheme. (b) Initial and boundary conditions for 
integration along characteristics. (Letter with overhead arrows in figure are equivalent to boldface letters 
in text.) 
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The compatibility relations corresponding to the imaginary characteristics are of 
the form 

= G, f iG,, 

where aAk’, ajk), G,, G, are complicated real expressions involving uh , vh, up, vy, a, 
p, r,r, F, &,, a&,/ax, and a&lay. Addition and subtraction of these two equations yields 
two real equations which are used to obtain 

H,,V=u, + VH,, . Vu, - 6 x VG,, . Vu, 

=-H,,V*U~-VH~,.V~~+~XVG~,VU~-H~~V~V~ 

- VH,, . vu,, + k x VG,, 4’v,f$E,-$F4 (39) 

expressing u, in terms of uh and vh, and 

H,,V*v, + VH,, . Vv, - k^ X VG,., * VV, 

= -H,,V*u, - VH,, . Vu, + l X VG,, * vu, --~,3~‘~h 

- VH,, . b,, + ,t x VG,3 VV,+~E,-;FF, (40) 

expressing ve in terms of uh and vh, where 

G, = 
aO$ap + a;i)ajd a(i)aW _ aWaW 

ag)2 + ajO* ) 
H,= R1 ‘.R, 

a;” + ajl’2 

Ei= 
a;‘G _ a”‘G 

I ’ R, 
a”‘G + a”‘G 

at.l)2 + a;i)* 
Fi= R R I I, .X)2 + a;i)2 

and & is the unit vector in the vertical z direction. All derivatives in (39) and (40) are 
replaced with central difference approximations, the velocity components (u, , vh) are 
replaced with (u(i) h , vi”) and velocity components (ue, ve) are replaced with the initial 
guesses (ulp), v:“) everywhere except in the derivatives appearing on the left-hand 
sides of the equations. Integration by standard relaxation techniques yields the 
improved estimates (uil), v:“). The boundary conditions employed in this procedure 
are given schematically in Fig. 3a. On the upstream boundary we assume (u, , vr ) = 
(1,0) and (u2, v2) = (JI, 0) which gives the condition u, =p(l + a). On the boundary 
y = 0, which is assumed here to be a surface of symmetry, we have v, = 0. We also 
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assume that the mesh encloses a large enough portion of the flow field so that on the 
boundaries furthest from the obstacle in the positive y and downstream directions, we 
may neglect any disturbances in the y direction. Again for flow around a cylinder one 
must require that the component of (u,, ue) normal to the cylinder vanish. 

Repeated iterations of this scheme result in successive approximations (uik), uy’, 
uik), ul;“) which hopefully converge to a physically reasonable solution. As previously 
stated, our experience with the algorithm has indicated that the iterations do in fact 
converge so long as the obstacle heights are moderate and the relevant flow 
parameters fall within certain bounds. Examples of our calculations are presented in 
the next section. 

5. RESULTS 

The algorithm described in Section 4 has been applied to the problem of two-layer 
flow over various types of obstacles. Calculations have been performed for both free 
upper surface and rigid upper surface flows. Three cases are presented. 

a. Flow past a Cylinder; Rigid Upper Surface 

In Fig. 4 we show the interface separating the two fluids for flow around a 
cylinder. The upper boundary of the flow is taken to be a rigid horizontal surface. 
The flow is left to right and the values of the relevant paremeters are FZ = 1.2, 
a = 1.0, /3 = 0.75, and y = 0.237. Here we define y to be the cylinder width in the 
direction perpendicular to the flow divided by its length flowwise. Comparison of 
such solutions corresponding to small y agree well with the linear solutions (obtained 

FIG. 4. Flow past a cylinder; F* = 1.2, a = 1.0, p = 0.75, y = 0.237. 
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in Section 3) in the region adjacent to or just downstream of the cylinder. Further 
downstream of the obstacle, nonlinear effects are important even for small y. An 
important question concerning such solutions is whether or not continuous solutions 
truly exist. For example, for the related problem of the supersonic flow of a 
compressible gas around a wedge, shocks are known to extend downstream from the 
leading edge. However, the equations governing two-layered flow are partially elliptic 
in nature owing to the set of imaginary characteristics. This feature of the two-layer 
model equations is illustrated in Fig. 5. Here we plot the two families of charac- 
teristic curves in the upper xy plane. The flow again is left to right. The dashed lines 
have the slope of the characteristics far upstream. Important here are the charac- 
teristics just upstream of the leading edge of the cylinder. Due to the elliptic nature of 
the equations, effects of the disturbance have propagated upstream, with the result 
that each of the families of characteristic curves fill the entire flow region in such a 
way that no two curves intersect. In contrast, the characteristics for the supersonic 
flow of a compressible gas around a thin wedge cross each other along a line 
extending downstream from the leading edge. Such lines of intersecting characteristics 
reflect the presence of discontinuities or shock waves in the flow, while the absence of 
intersecting characteristics implies continuous flow. Hence, based on this graphically 
compelling evidence, we conclude that continuous flows exist for sufficiently small y. 
Increasing y results in solutions whose characteristics become increasingly concen- 
trated near the leading and trailing edges of the cylinder. For larger still y, continuous 
flows are no longer possible and a valid theory must allow for the presence of shock 
waves or hydraulic jumps. The analysis of flows containing such discontinuities is 
beyond the scope of the present report. 

FIG. 5. Characteristics for flow past a cylinder; F’ = 1.2, a = 1.0, /I = 0.75, y = 0.237. 
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FIG. 6. Flow over a hill; F* = 1.2, a= 1.0, p=O.75, r=O.35. 

b. Two-layer Flow over an Obstacle; Rigid Upper Surface 

In Fig. 6 we show the interface separating the two fluids for flow over an obstacle 
on the bottom horizontal surface. The obstacle is pictured below. The flow here is 
right to left and the values of the relevant parameters are F* = 1.2, a = 1.0, /I = 0.75, 
and r= 0.35. The parameter r is defined to be the maximum height of the obstacle 
divided by the upstream thickness of the bottom fluid H,, We note the following 
prominent features of the flow. First, the interface is depressed immediately above the 
obstacle and in a wedge extending downstream of the obstacle. Also, a rise in the 
interface appears just downstream of the vertex of the wedge followed by a less 
noticeable depression. Examination of the characteristics reveal that these solutions 
are continuous and indeed continuous solutions for this obstacle exist for values of r 
up to approximately 0.5. Continuous solutions for larger values of 6 are possible so 
long as the slope of the obstacle is made more gradual. 

c. Two-layer Flow around an Obstacle Interior to a Layer: Free Upper Surface 

In this case we consider a two-layer fluid model with a obstacle placed interior to 
one of the layers and a free upper surface (see Fig. 7). The equations governing the 
flow around an obstacle interior to the bottom layer are identical to those for two- 
layer flow over an obstacle on the bottom horizontal surface. This is due to the 
assumption of hydrostatics and the vertical averaging employed in each layer. The 
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FREE UPPER SURFACE 

h,(x,y) 

LAYER I + 
/////////////,,/,, 

x=-a, X.=03 

FREE UPPER SURFACE 

h, (x,Y) 
LAYER I 
/ , / , , , , , , , , , , , , , , , , 

FIG. 7. Schematic of flow around an obstacle interior to a fluid layer. 

equations for flow around an obstacle in the upper layer are a straight forward 
extension of those for flow over an obstacle in the lower layer (see Appendix for 
details). In Fig. 8 we show the upper surface and interface between the two fluids for 
flow around an obstacle in the upper layer. The obstacle thickness employed in this 
calculation, as a function of x and y, is the same as that for the obstacle pictured in 
Fig. 6 with < = 0.4. The values of the other relevant parameters are F2 = 1.2, a = 1.0, 
and /I = 0.75. We see that the interface between the two fluid layers is depressed 
immediately below the obstacle and in a wedge extending downstream, with an 
accompanying rise just downstream of the vertex of the wedge followed by a slight 
depression. The disturbance on the top surface has the structure of alternating rises 
and depressions in the flow direction; the first being a depression just downstream of 
the obstacle. In Fig. 9 we show the upper surface and interface for flow around the 
same obstacle employed in the calculations generating Fig. 8; however, this time 
placed in the lower layer. Again the values of the flow parameters are given by 
F2 = 1.2, a = 1.0, and /I = 0.75. The main feature of the flow pictured here is a 
prominent rise in the interface separating the two fluids directly above the obstacle 
with less prominent rises along a wedge extending downstream. On the upper surface 
the disturbance is qualitatively similar to that for flow around an obstacle in the 
upper layer (see Fig. 8). We note, however, that at least for this particular set of 
parameters, the disturbance on the free upper surface is more pronounced for flow 
around an obstacle in the lower layer than that produced by flow around the same 
obstacle in the upper layer. 
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FIG. 8. Flow around an obstacle in upper layer; FZ = 1.2, a = 1.0, /I = 0.75, t= 0.4. 

FIG. 9. Flow around an obstable in lower layer; F2 = 1.2, a = 1.0, p = 0.75, < = 0.4. 
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In each of the calculations described above we have employed an equispaced mesh 
in the upper xy plane having 25 elements in the x direction and 15 in the positive y 
direction. Each of the obstacles occupied the middle 8 elements along the x axis. 
Calculations performed on finer meshes confirmed that this mesh size was sufficient 
to resolve the main features of the various flows. Typically convergence (defined to 
be a less than 1% error) was achieved in less than 10 iterations with computer times 
not exceeding 10 min. 

6. DISCUSSION 

We have presented a numerical algorithm for the nonlinear problem of the three- 
dimensional, steady flow of a continuously stratified, incompressible, hydrostatic 
fluid. The key features of the proposed method are as follows. First, we consider a 
fluid model comprised of IZ homogeneous layers. This idealization may be thought of 
as either an approximation to a continuously stratified fluid or alternately one might 
think of the fluid interfaces separating adjacent layers as approximations to the 
common oceanic and atmospheric phenomenon of strong temperature inversion 
layers. Employing vertical averages of the horizontal velocity components in each 
layer, we derive a nonlinear system of partial differential equations of order 2n 
governing the flow. For most problems of practical interest, this system of equations 
is of mixed type in the sense described in Section 4. Restricting our attention to this 
mixed case, we show that the problem may be thought of as a mixed initial value and 
boundary value problem. That is, we alternately apply relaxation techniques to the 
compatibility relations associated with the complex characteristics and an integration 
by method of characteristics to the compatibility relations corresponding to the real 
characteristics. As outlined in Section 5, we have applied this method to the flow of a 
two-layered .fluid model around various obstacles. The iterations in each case have 
converged to physically reasonable solutions for values of the model parameters lying 
within certain bounds. 

For larger Froude number flows or for larger or less gradually sloped obstacles 
than those considered in this report, the actual flows are likely to be discontinuous 
and/or contain regions of separated flow. To see this consider the flow of a multilayer 
fluid about a cylinder extending vertically from the lower solid surface z = 0 to the 
fluid top z = Cy=‘=o h,. Recall that in each layer only the average horizontal velocity 
components are computed. For single-layer flow, one has the classical shallow water 
theory and the governing equations correspond to those for the steady two- 
dimensional flow of a compressible gas with y, the ratio of specific heats, equal to 2. 
Thus the theory of one-layer supercritical flow is completely analogous to the theory 
of steady, two-dimensional supersonic flows in gas dynamics. For example, then, we 
expect that in the case of one-layer flow around a cylinder whose horizontal cross 
section is streamlined in the flow direction, the flow will contain an attached, oblique 
hydraulic jump while less streamlined cylinders will generate hydraulic jumps 
detached from the cylinder. For a multilayer model we have in each layer the two- 
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dimensional flow of a homogeneous fluid about a body defined by the cross section 
of the cylinder. The main complicating factor is the coupling that exists between 
different layers. This coupling allows for continuous solutions in the case of very thin 
cylinders (e.g., results pictured in Figs. 4 and 5); however, for the reasons outlined 
above we expect that there is a critical thickness (holding fixed the other flow 
parameters) beyond which continuous solutions do not exist. One plan to extend the 
algorithm to these discontinuous flows is to apply the extensive existing collection of 
numerical studies on two-dimensional oblique, attached and detached shock waves in 
gas dynamics to this problem. This approach seems promising and is the subject of 
current study. 

Another possible extension of this algorithm is to three-dimensional stratified flows 
over topography in a rotating system. The addition of rotational effects would make 
the model valid for the study of a wide range of large-scale geophysical problems 
(e.g., ocean currents around islands or sea mounts, air flow over mountain ranges, 
Jupiter’s Great Red Spot, and interactions between the Earth’s liquid core and solid 
mantle). A particularly promising application of the model appears to be the study of 
large-scale inertial flows, i.e., flows corresponding to Rossby numbers of order of 
magnitude 1. It is known, for instance, that the Rossby number for westerm boundary 
currents in the oceans is typically near unity. Consequently, the large literature of 
theoretical quasi-geostrophic studies are generally not applicable to these inertial 
boundary currents. The equations governing the steady three-dimensional flow of an 
n-layer fluid system on a beta-plane are given by: 

(i) continuity or mass conservation equation, 

(ii) Bernoulli’s theorem, 

g+(U)+Uf)+pr+g 2 Pjhj+gPi i hj="; 

/=i+l j=O 

(iii) Vorticity equation, 

D @i+.fo+P~=~ 
Dt hi ’ 

where fli = %,/8x - &J@ and D/Dt = a/at + (Gi, Vi) . V. Also, the Coriolis 
parameter f(y) is given by 

f(Y) =fW + BY =fo + PUT 

where f. = 20 cos O,, 0 is the rotation rate of the earth, 0, the latitude 
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corresponding to y = 0, p = 20 sin Oo/R and R is the radius of the earth. The 
vorticity equation can be integrated to yield 

Ei+f,+PY = - U,l(Yi) +fo +pyi 

hi Hi 

for upstream velocity distributions of the form ( Ui( y), 0), upstream layer thicknesses 
Hi, and Yi = Yi(x, y) defined to be the upstream y component of the streamline in the 
ith layer passing through a downstream position (x, y). Note that for upstream 
horizontal shear of the form 

U;(Y) =A3 + PY, 

the integrated vorticity equation has the particularly simple form 

The full set of 3n equations for an n-layer model is in the form of a coupled, 
nonlinear system of first-order PDEs. Our algorithm for nonrotating systems readily 
extends to this case. 

Finally it should be noted that the proposed algorithm, in its present form, can 
handle only obstacles which either project through the entire fluid depth (i.e., flow 
around a cylinder) or are contained entirely in a single layer. The more complicated 
problem of an obstacle projecting through several (but not all) layers is beyond the 
scope of this paper. As demonstrated by the results presented in this report and as 
indicated by the above discussion, however, the method is nonetheless potentially 
capable of handling a wide range of topographic profiles (including detailed realistic 
profiles of particular mountain ranges or islands) and flow parameters. We feel, 
therefore, that this procedure has the potential to be an important tool for 
understanding atmospheric and oceanic phenomena. 

APPENDIX: FREE UPPER SURFACE FLOW AROUND AN 
INTERIOR OBSTACLE 

Here we present the equations governing the steady flow of an n-layer fluid model 
with a free upper surface and an obstacle interior to the kth layer. The obstacle 
thickness as a function of x and y is given by h,(x, y). 

In each layer we have the continuity equations and Bernoulli’s theorem: 

$ (h,ui) + 6 (h,o,) = 0, 

+ (Uf + Of) +Pi=Eip i = l,..., n, 
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where pi is given by 

421 

and the Bernoulli constant B, is given by 

B,=+J;+g 2 4’Hj+g i Hi. 
j=i+l Pi j=l 

The pressure in the ith layer, as a function of x, y, and z, is given by 

P(xvY,z)=Ps +g 2 Pjhj+gP,ho+gP t(,=, J z)9 21: h.- k'iy 
j=i+l 

'P,+pi~,~jhifgpi(~ohj-z)~ k < i, 

where ps is the (constant) pressure at the fluid top. 
For two-layer flow, Bernoulli’s theorem for each layer reduces to one of the two 

following forms, depending on the location of the obstacle: 

(a) obstacle in the top layer, 

{(u: + u:) + g(h, + h, + h,) = B,, 

t@: + u:> + g@,/iMo + 4) + gh, =B,; 

(b) obstacle in bottom layer, 

f<u: + u:) + g(h, + h, + h,) = B,, 

f<u: + 0:) +g@zh)h, +g@o + W =B,. 
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